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ABSTRACT
Mid-air input, enabled by recent progress in computer vision
based marker-less hand tracking, is an exciting candidate for
text entry where direct touch input is not practicable or not
available. In this paper we investigate the use of chord-like
multi-finger gestures for entering text in mid-air. In contrast
to previous methods, they require no extrinsic targets and
can be performed eyes-free. We systematically explore the
design space of hand gestures by computationally optimiz-
ing the letter-to-gesture mapping with respect to multiple
objectives: performance, anatomical comfort, learnability
and mnemonics. First investigations of one optimization
case show entry rates of 22 words per minute. While this is
promising, our study reveals several limitations of both, the
mapping design as well as the available tracking methods.
We discuss open challenges in mid-air input and conclude
with recommendations for future work.

Categories and Subject Descriptors
H.5.m. [Information Interfaces and Presentation (e.g.
HCI)]: Miscellaneous
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1. INTRODUCTION
The hand is the most dexterous of the human extremities.
The many degrees of freedom (DOFs) that it exhibits allow
us to perform fast and precise movements, such as commu-
nication via sign language at rates of up to 225 words per
minute (WPM) [2]. Recent advances in computer vision
based, markerless hand tracking [15, 20] have increased ex-
pectations to finally exploit the full potential of the hand for
computer input. In particular, mid-air text entry is an excit-
ing and promising input modality for wearable and mobile
devices, or large interactive displays. As shown in Figure 1,
it can allow for freehand input for example onto a small
smartwatch or a distant TV screen. In both cases direct
touch is not practicable or not possible.
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Figure 1: Mid-air input allows text entry on any
device where direct touch is not practicable, such as
smartwatches (left) or TV screens (right). Here, ‘h’
and ‘a’ are entered by a multi-finger gesture.

Previous attempts have used a single end effector for select-
ing 3D key targets or performing continuous gestures [10, 13,
18]. This does not exploit the full capacity of the hand, is
slow and tiring. Instead, this paper studies the use of chord-
like multi-finger gestures as shown in Figure 1. These rely
only on proprioceptive feedback of joint angles and make
use of many degrees of freedom. The method allows input
without looking and is literally right at your fingertips.

We use a computational optimization method to identify
gesture sets that allow for high-throughput. Building on
prior work in keyboard optimization [4, 23], our previous
studies [19], and existing literature, we construct a novel
objective function called PALM that optimizes a letter-to-
gesture mapping with respect to performance (P), anatom-
ical comfort (A), learnability (L), and mnemonics (M). We
empirically study one outcome of this approach, called Fast-
Type. We built a prototype system for tracking the hand
with the Leap Motion sensor1 and recognizing hand ges-
tures as defined by FastType. First investigations with 10
participants showed promising input rates [19] with an av-
erage of 22 WPM and peak performances of up to 38 WPM.
However, they cannot keep up yet to those of physical key-
boards or sign language. We identify several challenges with
respect to individual differences, learning time and techno-
logical limitations and end with a list of opportunities for
future research to overcome those limitations.

1
https://www.leapmotion.com/

https://www.leapmotion.com/


2. RELATED WORK
In the following we discuss recent developments in mid-air
input from two viewpoints. First, we give a quick overview
of technological advances in markerless hand tracking dur-
ing the last 4-5 years. Then we review previous text entry
methods for mid-air input.

2.1 Markerless Hand Tracking
We limit our discussion to methods that work in real time
without the use of markers. Oikonomidis et al. [14] pro-
posed a method for tracking the hand using a single depth
camera, which achieved frame rates of 15 frames per second
(fps). Wang and Popović [22] proposed a two-camera setup
and a method to track hands without gloves at real time
speeds. Melax et al. [11] proposed a method for tracking
hands directly in depth by efficient parallel physics simula-
tions. They achieve 60 fps, suitable for interactive applica-
tions. Kim et al. [5] presented a method for tracking finger
articulations using a wrist-worn device that can be used for
simple interactions on-the-go. Recently, Qian et al. [15]
proposed a robust method for hand tracking based on hy-
brid optimization that runs at 25 fps. Commercial solutions
such as Three Gear2 and Leap Motion are also capable of
tracking full hand motion as a skeleton at high frame rates.

In our experiments we used the Leap Motion as the primary
tracker and a modified version of Sridhar et al. [20]. How-
ever, our approach is independent of the tracking device, but
only requires high framerate input of tracked hand motion
as a kinematic skeleton.

2.2 Mid-Air Text Entry
Although mid-air text entry seems a naturally fast input
method, previous work has shown limited performances in
comparison to physical or virtual keyboards. Generally, the
methods can be classified into two categories:

Selection-based techniques require pointing on external
key targets either on a 2D plane or a 3D grid. Previous
studies have evaluated different keyboard layouts and the
QWERTY keyboard was found to be the fastest with entry
rates between 13 and 19 WPM [9, 18]. Markussen et al. [10]
extended a previously introduced shape writing keyboard [7]
to mid-air. Letters were selected by continuous movements
through the respective keys. They achieved a rate of 28.1
WPM on a small phrase set, using a marker-based finger
tracking system. Recently there have been efforts to imple-
ment existing keyboard layouts with the Leap Motion, such
as the Minuum keyboard3 and Dasher4.

Gesture-based techniques map free-hand gestures (or static
postures) to characters or words. Different approaches have
been proposed to extend handwriting and unistroke meth-
ods to 3D [6, 13, 16], reaching entry rates of 11 WPM [13].
Sign language is the most prominent example of gesture-
based, word-level “text entry” with rates in the range of 175
to 225 WPM [2]. However, current technology is not yet ca-
pable of fully tracking complex sign language that employs
discrete postures as well as continuous movements.

2
http://www.threegear.com/

3
http://minuum.com/future-of-wearable-typing/

4
http://www.inference.phy.cam.ac.uk/dasher

3. MULTI-FINGER GESTURES
The above efforts show large interest in mid-air text entry.
However, they cannot compete with traditional physical or
even virtual keyboards. We identify several reasons for this:
(1) The capacity of the hand is limited by the use of only one
end-effector. (2) Extrinsic targets require high perceptual
attention for accurate pointing. (3) In some methods, the
3D interaction space of the hand is reduced to a 2D plane
in front of the screen. (4) Pointing and gesturing involving
the whole upper extremity is slow and tiring (Gorilla arm).

To overcome these limitations, our work focuses on chord-
like motions in mid-air performed by multiple fingers (Fig-
ure 1). In this input paradigm, the involved fingers are ex-
tended and flexed at a single joint to a discriminable end
posture. This requires no external target, allows eyes-free
input controlled by proprioception and is independent of
the global position of the hand. In the following, we use
the terms ‘gesture’ and ‘posture’ interchangeably, denoting
a combination of the static joint angles of each finger.

3.1 Mapping Gestures to Letters
The space of possible gesture-to-letter mappings is (expo-
nentially) large. Nevertheless, we can systematically explore
it by employing a computational optimization method, as
done in previous work on keyboard optimization (e.g. [4,
23]). Our design task is to maximize the usability U of a let-
ter assignment. We assume that there are n characters and
m discrete postures. As n � m, this makes our optimiza-
tion task an instance of the Generalized Assignment Prob-
lem (GAP) [3]. To characterize U , we formulate a multi-
objective function called PALM which addresses four fac-
tors: Performance, Anatomical Comfort, Learnability, and
Mnemonics. U is then defined as a weighted sum of these fac-
tors. In the following we go through the four objectives and
give an intuition on how we derive their respective scores.
Further details can be found in [19].

Performance: Finger movement performance can be quan-
tified by the time it takes for one end-effector to reach a
target from a given position. Fitts’ law predicts the move-
ment time (MT ) to increase logarithmically as a function of
movement distance and target width. It has been highly suc-
cessful for predicting MT with traditional input devices [8],
such as mouse or virtual keyboards. In [19] we derive Fitts’
law models for each finger and explain their use in predicting
MT for multi-finger gestures.

Anatomical Comfort: Due to anatomical constraints, the
single fingers cannot be controlled fully independently of
each other. The result is unintended co-activation of non-
instructed fingers during movement. For example, it is not
possible to move the ring finger without unvoluntary move-
ment of the little finger. Hand gestures should minimize the
extent to which non-instructed fingers move, as it can cause
recognition errors. Schieber [17] proposed an index of indi-
viduation that quantifies how independently an instructed
finger can be moved from all others. In [19] we conduct a
study to derive the individuation indices for each finger and
describe how these can be used to measure the anatomical
comfort of a multi-finger gesture.

Learnability: Learnability is an important factor to con-
sider for any activity involving rapid and careful articula-
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Finger Flexion Character Finger Flexion Character
0,1,0,0,0 1,1,0,0,0 n
1,0,0,0,0 a 1,0,0,1,0 o
0,0,1,0,1 b 0,0,0,1,1 p
1,1,0,1,0 c 0,1,1,1,1 q
0,1,1,1,0 d 0,1,0,1,0 r
0,0,0,1,0 e 0,1,1,0,0 s
1,1,1,1,0 f 0,0,1,0,0 t
0,1,0,0,1 g 0,0,0,0,1 u
0,0,1,1,0 h 1,0,0,1,1 v
1,0,1,0,0 i 1,0,0,0,1 w
0,1,1,0,1 j 0,0,1,1,1 x
1,1,0,0,1 k 0,1,0,1,1 y
1,1,1,0,0 l 1,0,1,0,1 z
1,0,1,1,0 m

Table 1: FastType is optimized for performance,
respecting anatomical constraints and learnability.
The 0-1 strings describe each gesture: ordered from
thumb to little finger, a 1 denotes that the finger is
flexed, while 0 means extended.

tion of multiple joints. To develop a score for learnability
of a gesture, we build on some prevalent theories of motor
learning that view learning as a hierarchical combination of
primitives [12]. According to this view, the brain simpli-
fies multi-dimensional motor control by collapsing it into a
few dimensions. Practicing a complex gesture gradually in-
creases hierarchical organization and decreases reliance on
feedback. The consequence is for example, that the fewer
fingers a gesture involves, the easier it will be to learn. A
mathematical formulation of this effect is described in [19].

Mnemonics: While our learnability score looks at motor
learning “from scratch”, the mnemonics score focuses on eas-
ily memorable gestures. Studies of human memory suggest
that categorization, chunking, and mnenomics help form-
ing more durable long-term memory traces among otherwise
unrelated materials [21]. To identify finger mnemonics, we
build on a recent study of multi-finger chord gestures that
showed a positive effect on learning when assigning gestures
with respect to mnemonics families [21]. In particular, we
include the following mnemonics families: neighboring fin-
gers (e.g. thumb and little finger together), base (e.g. thumb
with other fingers), and one single finger. The combination
of these rules into a mnemonics score M is described in [19].

3.2 Outcome: FastType
The optimization method can be used to generate differ-
ent mappings, depending on the weighting of the objectives.
The exploration of the design space by varying these weights
is described in [19]. There we also compare the predicted
performance of various outcomes with that of existing meth-
ods, such as fingerspelling. Here we concentrate on only one
of the outcomes: FastType maps the letters a-z (including
space), to multi-finger gestures including all 5 fingers. Fast-
Type is optimized with a focus on performance, lowering the
weights of the other objectives. Expert motor performance
is predicted in [19] to be 54.7 WPM. The mapping is shown
in Table 1. Each letter is assigned a 0-1 string which de-
scribes the gesture. Ordered from thumb to little finger, a
1 denotes flexion of the finger, while 0 means comfortably
extended. Optimized for performance, the mapping ensures
that frequent letter pairs, such as ‘th’, are mapped to ges-
tures that require minimal movement for transition.

(a) (b) (c)

Figure 2: Tracking challenge: Error made by the
Leap Motion tracking a pinching posture. (a) The
input posture, (b) the posture as recognized by the
Leap Motion tracker (c) the true posture.

4. INVESTIGATING PERFORMANCE
In order to investigate the performance achievable with mid-
air text entry in practice, we conducted a preliminary evalu-
ation of FastType with 10 users. We followed a word-level
paradigm previously used by Bi et al. [1]. Here, a randomly
sampled word is practiced until performance peaks. The
benefit of this is that the upper boundary of entry perfor-
mance can be estimated even without having to learn the
full gesture set. We built a prototype that allowed users to
enter text and recorded performance of typed words. Our
gesture recognizer used joint angle data from the Leap Mo-
tion and used a combination of dwell times and signal peak
detection to detect when users made a particular posture.
Further details can be found in [19].

Results: Overall, the 10 users entered 53 words at an aver-
age peak performance of 22.25 WPM (SD 8.9). For analyz-
ing the peak performance of each word, we extracted the top
three repetitions with an error rate less than 15% (measured
by Damerau-Levenshtein distance). Three words had to be
excluded due to this restriction. The remaining words were
typed with an average error rate of 2.3% (SD 0.04). Aver-
age peak performances of users were significantly different
(one-way ANOVA on WPMs: F (9, 49) = 7.68, p < 0.001),
ranging from 13 WPM to 38.1 WPM.

5. DISCUSSION
This first exploration of mid-air text entry with multi-finger
gestures showed promising entry rates, motivating the need
for further research in this area. However, several issues per-
sist, such as low entry rates and learnability of gestures. In
this section we go beyond our previous work in [19]. Based
on our observations we identify several reasons for these is-
sues and discuss the open challenges of mid-air text entry.

Large individual differences: We found significant indi-
vidual differences among the users which can be attributed
to: (1) anatomical differences in finger individuation and
articulation, and (2) cognitive differences in motor control
and learning. The design of hand gestures, tracking, and
recognition algorithms need to account for these differences.

Learning: The learnability of gestures is a pragmatic ob-
stacle for multi-finger input. If a gesture set for text entry
is prohibitively time consuming to learn it will affect large-
scale adoption. With PALM, we proposed a method to opti-
mize for learnability. However, further research is needed to
evaluate the involved models and their influence on learn-
ing time. In practice, users required clear instructions on



how to perform efficiently and often made errors in their
movements. However, after many repetitions, some users
reported quick and fast recall for some pre-learned gestures.

Technological difficulties: Markerless tracking of hands
is a challenging, high-dimensional optimization problem. In
order for the tracked motion to be usable for input it is
essential to track all 26 DOFs of the hand. Due to anatomi-
cal dependencies, not all DOFs are independent. Therefore,
many tracking methods simplify the DOFs using constraints
during tracking. However, the dependencies are not uniform
over the population. This leads to inaccuracies in tracking
when using such constraints. We have found evidence of this
with the Leap Motion, particularly with pinching gestures
(see Figure 2). In our study we observed poor tracking and
gesture recognition to limit user performance. When told to
enter a word without looking at visual feedback, participants
could perform faster, but tracking was often not reliable.

Feedback: Frequent and easy gestures were observed to
be reliably performed eyes-free. Only during early stages of
training participants frequently looked at their hands. This
may help to avoid involuntary movements of non-instructed
fingers. Auditory feedback at the input of each letter was
helpful for users. Touch feedback could potentially be lever-
aged for pinching or fisting gestures, but tracking with the
Leap Motion was poor in these cases (Figure 2).

Ergonomics: The effect of fatigue in multi-finger input is
not fully understood yet. In contrast to prior work, users
were not required to control the upper arm and shoulder
but only wrist and finger movements. Thus, “Gorilla arm”
problems could be avoided. However, users in our study
reported discomfort in their lower arm and wrist.

6. CONCLUSION AND FUTURE WORK
Mid-air input by chord-like hand gestures, as deployed here,
can work as an eyes-free, always-on input method. This
seems an ideal candidate for mobile and wearable devices
or large displays, as well as under special conditions that
require touch-free input. The entry rates achieved so far are
promising. However, we discussed several challenges that
need to be addressed before mid-air input can be effectively
used as an alternative to the standard keyboard. Therefore,
future work should study:

1. The use of more DOFs or finer granularity of each
DOF (e.g. different degrees of flexion–extension to map
several letters to one finger).

2. Integration of different feedback modalities such as
haptic, visual or auditory feedback (e.g. optional com-
bination with surfaces or on-body interaction).

3. The influence of gesture design on learning time (mo-
toric as well as cognitive learning).

4. Recognition algorithms and gesture sets designed for
individual differences in anatomy and finger dexterity.

5. More sophisticated tracking solutions and integration
of technological limitations into the design process.
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